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Abstract

In this paper, the resonance mechanism and conditions of train–bridge system are investigated through theoretical

derivations, numerical simulations and experimental data analyses. The resonant responses of the bridge induced by

moving trains are classified into three types according to different resonance mechanisms: the first is related to the

periodical actions of moving load series of the vertical weights, lateral centrifugal and wind forces of vehicles; the second is

induced by the loading rate of moving load series of vehicles; the third is owing to the periodically loading of the swing

forces of the train vehicles excited by track irregularities and wheel hunting movements. The vehicle resonance is induced

by the periodical action of regular arrangement of bridge spans and their deflections. The resonant conditions are proposed

and the corresponding resonant train speeds are determined. The application scopes of resonance conditions are discussed.

The resonance of the train–bridge system is affected by the span, total length, lateral and vertical stiffness of the bridge, the

compositions of the train, and the axle arrangements and natural frequencies of the vehicles. The resonant train speeds for

some bridges are estimated and are compared with the critical train speeds obtained from the dynamic simulation of

train–bridge interaction model or from the field measurements.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic response of railway bridges under moving train loads is one of the fundamental problems to be
solved in bridge design. On the one hand, the train running with high speed induces dynamic impact on the
bridge structure, influencing their working state and service life. On the other hand, the vibration of the bridge
in turn affects the running stability and safety of the train vehicles, and thus becomes an important factor for
evaluating the dynamic parameters of the bridge in design. Therefore, great efforts have been constantly
attached to the subject of the dynamic interactions between vehicles and bridges.

The research work on this subject has a long history of more than 150 years. Especially in the last decades,
with the construction of high-speed railway bridges, the raise of train speeds and the increase of train loads,
increasingly sophisticated analytical models have been developed by researchers in China and abroad [1–12].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Based on these models, the vertical and lateral dynamic interactions of train–bridge system have been studied
and many useful results have applied to practical bridge engineering [13,14].

It has been noticed that when a row of train vehicles travel through a railway bridge, the loading frequencies
will change corresponding to different train speeds. The resonant vibrations occur when the loading
frequencies coincide with the natural frequencies of the bridges or the train vehicles. The strong vibrations
induced by the resonance of train–bridge system not only directly influence the working state and
serviceability of the bridge, but also result in the reduction of the stability and safety of the moving train
vehicles, deteriorate the riding comfort of the passengers, and sometimes even destabilize the ballast track on
the bridge. Therefore, it is necessary to analyze this problem and to develop some methods to predict the
resonant speeds of the running trains and to assess the dynamic behaviors of railway bridges in resonance
conditions. Matsuura [13] systematically researched the resonance of single span bridges during the design of
the Shinkansen bridges. By using the half-vehicle model, he obtained the resonant curves of several bridges
with different spans. Frýba [4,5] studied in theory the dynamic interaction of a beam under moving loads and
proposed the corresponding resonance formula. Li and Su [15] investigated the resonant vibration for a simply
supported girder under high-speed trains, using an idealized vehicle model with a rigid body and four wheel-
sets. Yang and Yau [9–11] proposed a suitable numerical model to study the resonance of a beam induced by
moving loads and the corresponding effect of resonance cancellation. Ju and Lin [16] established a three-
dimensional finite element model to investigate the resonant characteristics of multi-span bridges with high
piers and simply supported beams under high-speed trains. They also established a finite element model of
high-speed train moving on the ground and found the dominated frequency f n ¼ nV=L of the trainloads when
a train moving on the ground [17]. Yang [9], Yau [18] and Kwark [19] studied the resonance of continuous
bridges due to moving trains. Guo [20] in her Ph.D. dissertation presented the resonant conditions for trains
composed of a row of vehicles with different axle intervals and loads.

The resonance of train–bridge system is influenced by many factors, such as the periodically loading on the
bridge of the moving load series formed by the wheel–axle weights of the train vehicles; the harmonic forces on
the bridge of the moving trains excited by rail irregularities, wheel flats and hunting movements; and the
periodical actions on the moving vehicles of long bridges with identical spans and their deflections, and so on.
When a train travels on a bridge at a certain speed, the vehicles with lateral wind pressure may form a lateral
moving load series, which may be transferred through the vehicle wheels to the bridge girder. Therefore,
the static wind forces due to mean wind may also induce dynamic response of the bridge (see Fig. 1). For the
curved bridge, the centrifugal forces from the car bodies will form similar lateral moving load series on the
bridge as well.
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Fig. 1. Dynamic impact of train vehicles with lateral wind load moving on bridge.



ARTICLE IN PRESS
H. Xia et al. / Journal of Sound and Vibration 297 (2006) 810–822812
The resonant vibrations of the train–bridge system are very complicated. The resonance mechanisms and
conditions of the train–bridge system are analyzed in this paper, including the bridge resonance induced by
moving train loads and the vehicle resonance excited by the deformation of the bridge. The predicted resonant
train speeds are compared with the critical train speed from the dynamic simulation of train–bridge interaction
model or the field measurements.
2. Resonance analysis of bridges

2.1. Bridge resonance induced by moving load series

2.1.1. Fundamental analysis model

The resonance of the train–bridge system is affected by the span, total length, lateral and vertical stiffness of
the bridge, the compositions of the train, and the axle arrangements and natural frequencies of the vehicles.
The general mechanism of bridge resonance induced by moving load series can be described as follows.

A simply supported beam without damping subjected to a series of concentrated constant loads P with
identical interval dv is analyzed (see Fig. 2b), to simulate the loading actions of a real train moving on
the bridge. The train consists of several identical cars with the full length lv of each car, the rated
distance lc between the two bogies of a car, and the fixed distance lw between the two wheel–axles of a bogie
(see Fig. 2a).

Suppose the load series travel on the beam from left to right at a uniform speed V, and the distance of the
first force traveled is x ¼ Vt. For the load series with identical intervals, there exists a time delay Dt ¼ dv=Vt

between any two successive forces. The motion equation for the beam acted on by such moving load series can
be written as

EI
q4yðx; tÞ

qx4
þm

q2yðx; tÞ

qt2
¼
XN�1
k¼0

d x� V t�
k � dv

V

� �� �
P, (1)

where Lb is the span length of the beam; E is the elastic modulus; I is the constant moment of inertia of the
beam cross section; m is the constant mass per unit length of the beam; y(x, t) is the displacement of the beam
at position x and time t; N is the total number of moving loads; and d is the Dirac delta function.
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Fig. 2. Loading series of train vehicles on the bridge.
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Eq. (1) can be expressed in terms of the generalized coordinates as

€qnðtÞ þ o2qnðtÞ ¼
2

mL
P
XN�1
k¼0

sin
npV

Lb

ðt�
k � dv

V
Þ. (2)

The particular solution of Eq. (2) for the first vibration mode of the beam is

qðtÞ ¼
2PL3

EIp4
1

1� b2
XN�1
k¼0

sino t�
k � dv

V

� �
� bsino t�

k � dv

V

� �� �
, (3)

where b ¼ o=o is the ratio of exciting frequency to the natural frequency of the beam; 1=ð1� b2Þ is the
dynamic magnification factor; o ¼ pV=Lb is the exciting circular frequency of the moving loads; and o is the
natural circular frequency of the beam

o ¼
p2

L2
b

ffiffiffiffiffiffi
EI

m

r
. (4)

The displacement response of the beam where only the first mode is considered can thus be expressed as

yðx; tÞ ¼
2PL3

EIp4
1

1� b2
sin

px

Lb

XN�1
k¼0

sino t�
k � dv

V

� �
� b

XN�1
k¼0

sino t�
k � dv

V

� �" #
. (5)

The first term of the right side of Eq. (5) represents the forced response of the beam due to the moving loads
while the second term the transient response due to its free vibration. According to their different mechanisms,
the resonant responses of a simply supported beam subjected to moving load series can be divided into two
types.

2.1.2. Bridge resonance induced by periodically loading of moving load series

First, the discussion is made for the second progression term of Eq. (5), to explain how the transient
response in common sense may induce the resonance of the beam.

Before considering the second progression series, it is instructive to introduce the necessary transformation
of triangular progression. For the sum of a finite triangular progression sinða� ixÞ, (i ¼ 1,2,ym), it can be
expressed as

Xm

i¼1

sinða� ixÞ ¼
Xm

i¼1

½sin acos ix� cos asin ix�. (6)

The two terms of Eq. (6) can be further expressed as

Pm
i¼1

sin ix ¼ sin 0:5mx � sin 0:5ðmþ 1Þx � csc 0:5x;

Pm
i¼1

cos ix ¼ sin 0:5mx � cos 0:5ðmþ 1Þx � csc 0:5x:

8>>><
>>>:

(7)

Introducing them into Eq. (6) leads to

Xm

i¼1

sinða� ixÞ ¼
sin 0:5mx � sin a� 0:5ðmþ 1Þx½ �

sin 0:5x
. (8)

Now let i ¼ k, m ¼ N � 1, x ¼ odv=V , a ¼ ot, the progression term of the transient response in Eq. (5)
becomes as the form

XN�1
k¼0

sino t�
k � dv

V

� �
¼ sinotþ

XN�1
k¼1

sino t�
k � dv

V

� �

¼ sinotþ
sin ðN � 1Þ � ðodv=2V Þ
� �

� sin ot�N � ðodv=2V Þ
� �

sinðodv=2V Þ
. ð9Þ
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For odv=2V ¼ �ip, the second term of Eq. (9) becomes an indeterminate form 0/0, but when L’Hospital’s
rule is applied, the limit solution is found to be

lim
ðodv=2V Þ!�ip

sin ðN � 1Þ � ðodv=2V Þ
� �

� sin ot�N � ðodv=2V Þ
� �

sinðodv=2V Þ
¼ ðN � 1Þsino t�N � ðdv=2V Þ

� �
. (10)

Obviously, the extreme condition with physical significance for Eq. (9) is

odv

2V
¼ ip; ði ¼ 1; 2; 3; . . .Þ. (11)

This is the same result as dv ¼ 2ipV=o that was derived in a different way in Ref. [10].
Substituting this condition into Eq. (9), the limit value of the transient response term in Eq. (5) is

obtained as

XN�1
k¼0

sino t�
k � dv

V

� ������
ðodv=2V Þ¼ip

¼ Nsinot. (12)

It can be seen that each force in the moving load series may induce the transient response of the structure,
and the successive forces form a series of periodical excitations. The response of the structure will be
successively amplified with the increase of the number of forces traveling through the beam.

The similar results can be obtained for higher modes of the bridge. Considering all of these modes and let
on ¼ 2pf bn, the resonant condition of the bridge under moving load series can be derived from Eq. (11) as

V br ¼
3:6 � f bn � dv

i
ðn ¼ 1; 2; . . . ; i ¼ 1; 2; . . .Þ, (13)

where Vbr is the resonant train speed (km/h); fbn is the nth vertical or lateral natural frequency of the bridge
(Hz); dv is the intervals of the moving loads (m), and the multiplicator i ¼ 1,2,y is determined by the extreme
condition Eq. (11).

Eq. (13) indicates that when a train moves on the bridge at speed V, the regularly arranged vehicle
wheel–axles may produce periodical dynamic actions on the bridge with the loading period dv=V . The bridge
resonance occurs when the loading period is close to the nth natural vibration period of the bridge. A series of
resonant responses related to different bridge natural frequencies may occur corresponding to different train
speeds. This is defined as the first resonant condition of bridge, which is determined by the time of the load
traveling through the distance dv.

2.1.3. Bridge resonance induced by loading rate of moving load series

As for the first progression term of Eq. (5) which represents the forced response of the bridge, the only
difference with the second term besides a nonzero multiplicator b is that the frequency o is replaced by o. An
extreme condition similar to Eq. (11) can thus be directly written as

odv

2V
¼ ip ði ¼ 1; 2; 3; . . .Þ. (14)

Substituting o ¼ pV=Lb into Eq. (14), the train speed V in the numerator is counteracted with that in the
denominator and thus results in the extreme condition

dv ¼ 2iLb ði ¼ 1; 2; 3; . . .Þ: (15)

The limit value of the steady-state response progression can be obtained by using this extreme condition

XN�1
k¼0

sino t�
k � dv

V

� ������
ðōdv=2V Þ¼ip

¼ Nsinot. (16)

There is no train speed V expressed in Eq. (15), namely, no resonant train speed exist. Eqs. (15) and (16)
show that when the interval of loads equals to 2i times of the bridge span, i.e. the half-wavelength formed by
the beam deflection, the successive increase of the number of the passing wheel axles may gradually enlarge the
bridge response. However, since the minimum axle intervals of real vehicles are much smaller than two times
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of the bridge span length, and the actual arrangement of wheel axles of the train vehicles is never identical, this
solution is only of mathematical significance. Therefore, the resonant train speed cannot be derived in this way.

In fact, the second resonance of the simply supported beam under moving train loads can be directly
determined from Eq. (5) by the dynamic magnification factor 1=ð1� b2Þ. When the frequency ratio b ¼ 1, i.e.
on ¼ on, the dynamic magnification factor 1=ð1� b2Þ will become infinitive. At this time the resonant
vibrations of the bridge is excited. For the simply supported beam under moving loads, the loading frequency
on ¼ npV=Lb, and the nth natural frequency of the beam on ¼ 2pf bn, the resonant train speed Vbr can be
described as

V br ¼
7:2 � f bn � Lb

n
ðn ¼ 1; 2; . . .Þ, (17)

where Lb is the length of the bridge span (m).
Eq. (17) indicates that the bridge resonance occurs when the time of the train’s traveling through the bridge

equals to half or n times of the natural vibration period of the bridge. This is defined as the second resonant
condition of bridge, which is determined by the loading rate of the moving loads related to the bridge span.

The resonant train speed calculated from Eq. (17) is rather high. For instance, the minimum natural
frequencies for the simply supported beams with moderate or small spans are between 80/Lb and 120/Lb

according to the Bridge Design Code of China, and the corresponding resonant train speeds estimated by Eq.
(17) are from 576 to 864 km/h, which are far higher than the current train speeds in operation. The second
resonant condition, however, is of certain significance in the resonance analysis for flexible bridges such as
those with high piers.

The resonance problems can be solved for other types of bridges such as continuous beams, rigid frame, and
so on, in a similar way to that for the simply supported beam.

2.1.4. Examples for bridge resonance induced by moving load series

2.1.4.1. Vertical resonance of bridge. Generally, the vertical vibration resonance of the bridge is carried out
for individual beams. In the dynamic analysis of the bridges on the Beijing–Shanghai High-speed Railway, the
dynamic interaction model of train–bridge system was used to study the resonant responses induced by the
Germany train ICE3, the France train TGV, the Japanese train E500 and the high-speed train CHT designed
in China. Fig. 3 shows the simulated distribution curves of the dynamic factors versus train speed for the PC
box beams with 20 and 32m spans, where dynamic factor is defined as the ratio of the maximum dynamic to
the maximum static deflection of the beam under the same load.

It is given that the natural frequencies of the 20 and 32m PC box beams are 7.73 and 4.23Hz, respectively.
By using Eq. (13), the corresponding resonant train speeds of TGV with the average full length of each car
18.7m can be estimated as 520 and 284.8 km/h. And the corresponding resonant train speeds are 285 and
400 km/h for ICE3, E500 and CHT whose average car lengths are all approximately 26m. From this example,
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Fig. 3. Dynamic factors of simply supported beams vs train speed.
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the calculation is based on dv ¼ lv, namely the full length of vehicle is taken as the load interval, where the four
axle loads of the rear bogie at the previous car and the front bogie at the following car are combined as a
concentrated load. The resonant train speeds estimated by Eq. (13) are in good accordance with the critical
train speeds from the simulated results, as compared in Fig. 3.

2.1.4.2. Lateral resonance of bridge. The lateral resonance analysis has special significance for bridges with
high piers under moving load series induced by centrifugal forces or the lateral wind pressures. Since the
lateral frequency of the bridge system is usually much lower than the vertical frequency, the critical train speed
for lateral resonance is also lower.

(a) Simply supported steel truss: A simply supported steel truss with the span of 48m is analyzed
as an example. The moving load series are the lateral axle loads induced by wind pressures acting on vehicle
bodies. The train concerned is composed of one locomotive followed by 18 passenger cars. The full length of each
car is 26.57m. The mean wind velocity is 25m/s. The resonant train speeds are evaluated by Eqs. (13) and (17).

The lateral natural frequency of the truss is 1.86Hz. The resonant train speed for the first resonant
condition estimated by Eq. (13) is

V br1 ¼
3:6� f bn � dv

i
¼

3:6� 1:86� 26:57

1
� 178 km=h.

The resonant train speed for the second resonant condition estimated by Eq. (17) is

V br2 ¼
7:2� f bn � Lb

n
¼

7:2� 1:86� 48

1
� 643 km=h.

To verify the evaluated resonant conditions, the dynamic responses of the truss under various train speeds are
analyzed by the whole history simulations of train–bridge system, with the calculation train speeds in the range of
5–700km/h [20]. Fig. 4 shows the distribution curve of the lateral displacements of the truss versus train speed.

The comparison between the estimated resonant train speeds and the simulated critical train speeds are in
good accordance. The two types of resonant responses are obvious in the distribution curve of the lateral
displacements of the truss versus train speed, where the peak values can be easily observed at the estimated
resonant train speeds. The second resonant train speed, however, is of little significance because it is much
higher than that in reality.

(b) Multi-span bridge with high pier: Since bridges often contains piers to support the bridge girders, the
dynamic effects cannot be ignored in studying the bridge resonance. The lateral vibration of a bridge with
piers is often analyzed as a system instead of a simply supported beam, because of the coupled movement of
the piers and beams.

In the analysis, the basic global lateral deformation of the bridge deck on which the train runs can be
reasonably assumed as a sinusoidal wave with a half-wavelength Lb and the frequency fb. The moving load
series are formed by the same lateral wind loads as in the first example.
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A bridge system consisting of two 32m simply surpported beams and a 56m high pier is analyzed as an
example. The modal analysis shows that the first mode of the bridge is dominated by the lateral vibrations of
the pier. With respect to the bridge lateral frequencies 0.95, 2.52 and 5.02Hz, the resonant train speeds
estimated by the first resonant condition Eq. (13) include

Vbr1 ¼
3:6� f b1 � dv

i
¼

3:6� 0:95� 26:57

1
� 90:9 km=h,

Vbr2 ¼
3:6� f b1 � dv

i
¼

3:6� 0:95� 26:57

2
� 45:4 km=h,

Vbr3 ¼
3:6� f b1 � dv

i
¼

3:6� 0:95� 26:57

3
� 30:3 km=h.

The possible resonant train speeds estimated from the second resonant condition Eq. (17) include

V br2 ¼
7:2� f b1 � Lb

i
¼

7:2� 0:95� 64

1
� 438 km=h,

V br2 ¼
7:2� f b2 � Lb

i
¼

7:2� 2:52� 64

1
� 581 km=h,

V br2 ¼
7:2� f b3 � Lb

i
¼

7:2� 5:02� 64

1
� 771 km=h.

The dynamic responses of the bridge under various train speeds are analyzed by the whole history
simulations of train–bridge system, with the calculation train speeds in the range of 5–900 km/h. Fig. 5 shows
the distribution curves of the lateral displacements of the pier top versus train speed.

The curves show that the lateral resonance of the pier is obvious: the lateral displacements appear peak
values at the train speeds slightly lower than the estimated ones by the first resonant condition; one can also
find the peak displacements at 380 and 740 km/h, which are close to the corresponding resonant train speeds
estimated from the second resonant condition. There is no obvious peak displacement at 581 km/h since the
mode shape of the second mode of the bridge is very small at the pier top. Considering that the natural
frequency of the bridge will decrease when loaded by the train, the estimated results are in accordance with
those from the whole history simulations of train–bridge system.

Furthermore, one can estimate the responses of the bridge under the vehicle centrifugal forces. As moving
load series, the vehicle centrifugal forces play the same mechanism to induce the lateral vibrations of the
bridge as the mean wind pressures acting on the vehicle bodies. Thus the calculated curves in Fig. 5 can also be
used for estimating centrifugal forces. According to the Fundamental Code for Design on Railway Bridge &
Culvert in China, the design centrifugal force can be 15% of the static load of vehicles, which is about 2.5
times of the design wind load of vehicles. Therefore, when considering the vehicle centrifugal forces, much
bigger pier-top displacements will be excited than those shown in Fig. 5.
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Fig. 5. Lateral displacement of high piers vs train speed.
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2.2. Bridge resonance owing to the sway forces of train vehicles

The third bridge resonance is induced by the periodical actions on the bridge of the lateral moving load
series owing to the sway forces of the train vehicles. The sway forces of vehicles may be excited by the track
irregularities and wheel hunting movements. The resonant train speed in this case can be determined by

V br ¼
3:6 � f bn � Ls

i
ðn ¼ 1; 2; . . . ; i ¼ 1; 2; . . .Þ. (18)

This equation is basically the same as Eq. (13) for the first resonance condition, except that dv is replaced by
Ls which represents the dominant wavelength of the track irregularities or wheel hunting movements. The
multiplicators n ¼ 1,2,y, i ¼ 1,2,y show that when the dominate frequency of the track irregularities or
wheel hunting movements equals to the nth natural frequency or their higher harmonic frequencies, the
resonance of the bridge occurs. This is called the third resonant condition of bridge.

In spite that both the track irregularities and the wheel hunting movements are of random properties,
Eq. (18) can still be used to estimate the lateral resonance of the bridge induced by their dominant
wavelengths. A good example is presented in Fig. 6, the distributions of the lateral displacements of the two
high piers versus train speed. The data in the figure were measured in the field experiments at two real bridges
on the Chengdu-Kunming Railway in China [21]. One can find that the peak values appear at certain train
speeds, which are in good accordance with the estimated resonant train speeds of 33 and 51.1 km/h,
respectively. The estimated resonant train speeds are calculated by Eq. (18), using the hunting wavelength
Ls ¼ 8.5m of the wheels with worn tyres, the given pier heights H ¼ 55 and 32m, and the corresponding
frequencies f ¼ 1.08 and 1.67Hz, respectively.

2.3. Application scopes of resonance conditions

Based on the analysis above, the resonant vibrations of bridges induced by moving trains have been
classified into three mechanisms. The first is related to the intervals of the moving load series, which form the
periodically loading on the bridge. The second is induced by the loading rate, i.e. the relative moving speed of
the train vehicles to the bridge. The third is owing to the swing forces of the train vehicles excited by the track
irregularities and wheel hunting movements.

In the above resonant conditions, the axle loads of the train vehicles are assumed to be in equidistance.
While in reality, there exist several axle intervals in a real train: the full length lv of a car, the rated center-to-
center distance lc between two bogies of a car, the fixed axle distance lw between two wheel-sets of a bogie, and
the different compositions of these distances. According to the relative lengths between the beam span or the
bridge length and the above loading intervals, when Eq. (13) is used to analyze the first resonance induced by
moving trains, the application scopes can be further discussed as follows (ref Figs. 2 and 7):

(1) Lbolw When the bridge length Lb is shorter than the fixed axle distance lw of a bogie, there can only be
one wheelset at any moment on the bridge, with the shortest excitation period lw=V and some other longer
periods as ðlv � lcÞ=V , lv=V yHowever, it is only an extremal situation in theory, for there does not exist such
short bridge in reality.
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Fig. 6. Lateral displacements of piers vs train speed.
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(2) lwoLbolv � lc: When the bridge length Lb is longer than the fixed axle distance lw of a bogie but shorter
than the distance lv � lc between the rear bogie of the previous car and the front bogie of the following car,
there can still be only one wheelset at any moment on the bridge, with the main excitation period ðlv � lcÞ=V

and some longer periods as lv=V y, while the shorter period lw=V is not obvious. This situation may occur for
the bridges with very short spans.

(3) lv � lcoLbolv: When the bridge length Lb is longer than the distance lv � lc between the rear bogie of
the previous car and the front bogie of the following car, but shorter than the full length lv of the car, there can
be two wheel-sets simultaneously on the bridge, with the main excitation period lv=V , while the shorter periods
as lw=V and ðlv � lcÞ=V are not obvious. Since the full lengths are about 25m for passengers car and 15m for
freight cars, this situation may occur for the commonly used bridges with small spans.

(4) lvoLbolT : When the bridge length Lb is longer than the full length lv of a car but shorter than the total
length lT of the whole train, there can be more than one cars and two wheelsets simultaneously on the bridge,
neither of the above excitation periods as lw=V , ðlv � lcÞ=V nor lv=V is obvious. This situation may occur for
the common bridges with moderate spans, or for the lateral resonance analysis of the bridge as a whole.

(5) lToLb: When the bridge length Lb is longer than the total length lT of the train, there can be several cars
with many wheelsets simultaneously on the bridge, thus the load series can not form periodically loading to the
bridge system. This situation may occur for long span bridges, or for the lateral resonance analysis of the
bridge as a whole. However, the resonant conditions proposed in this paper cannot be directly used to analyze
the resonant conditions for long span bridges, because the whole course of the train traveling over the bridge
longer than the total length of the train is equivalent as a half-loading period, and thus no harmonic load
forms. Therefore, Eqs. (13) and (17) cannot be directly used to estimate the resonant train speeds. As for the
third resonant condition where the bridge resonace is excited by rail irregularites or wheel hunting, no obvious
resonance can be observed for long span bridges because of the counteractions between the forces from the
wheelsets moving with different phases.
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Thus it can be seen that when using the above equations to analyze the train induced resonance of the
bridge, the loading intervals can be the full length lv of a car, the rated center-to-center distance lc of a car, the
fixed axle distance lw of a bogie, and the different compositions of these distances. While for a row of train
vehicles, the arrangement of the axle loads is not in equidistance, and neither equal are the values of all axle
forces which are affected by the bridge damping, track irregularities and other complicated factors. Therefore,
a series of resonant vibrations may be excited with different response levels when the train moving at various
speeds on the bridge, and a series of corresponding resonant train speeds could be found. Therefore, the
precise resonance analysis usually depends on the simulation calculations of the train–bridge dynamic
interaction system according to the real conditions of the train composition, the wheel arrangement and
vehicle loads.

3. Resonance analysis of train vehicles

As a row of train vehicles traveling over a bridge at speed V, the periodical actions on the vehicles can be
excited by the deflections of the bridge that consists of a long series of identical spans. The loading frequency
can be estimated as

f ¼ V=Lb. (19)

The vehicle resonance occurs when this loading frequency coincides with the natural frequency of the train
vehicles (ref. Fig. 8), when the dynamic responses of the vehicle will be greatly amplified. The critical train
speed can be written as

V vr ¼ 3:6 � f v � Lb, (20)

where Vvr is the critical train speed (km/h); fv is the natural vertical frequency of the vehicle (Hz); Lb is the span
length of the bridge (m).

The excitation of bridge deflections on the vehicles is equivalent with the mass-spring system on the ground
in harmonic vibrations. The transmissibility between the amplitudes of the mass and the deflection of the beam
can be estimated as [22]

TR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2xbÞ2

ð1� b2Þ2 þ ð2xbÞ2

s
. (21)

For a half-vehicle model with the sprung mass M ¼ 24t, the equivalent spring stiffness k ¼ 800 kN/m and
the damping ratio x ¼ 0:2, the natural frequency is calculated as 0.92Hz. At the critical train speed, i.e. b ¼ 1,
the transmissibility can be calculated as TR ¼ 2.69. It means that when the deflection of the beam is 2mm, the
amplitude of the vehicle will be as large as 5.38mm. Moreover, the resonance of vehicles will in turn enlarge
the dynamic impact on the bridge.

The fundamental vertical natural frequencies of the train vehicles are usually between 0.8 and 1.5Hz. For
the railway bridges with 20–40m spans, the corresponding critical train speeds could thus be estimated as
Vvr ¼ 57–216 km/h. Therefore, it is better not to arrange long series of identical spans in the design of railway
bridges, to prevent the vehicle resonance due to the bridge deflections. The other effective schemes to minimize
the influence of bridge vibration on the responses of vehicles include: to control the stiffness of the bridges to
Pier

Vt

Lb Lb Lb

M

Wheel

Beam

Fig. 8. Vehicle vibration induced by bridge deflection curves.
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reduce the span deflections, and to apply the cancellation technique through adjusting the span length and/or
the stiffness of the bridge to eliminate the resonance of the beams [11].

4. Conclusions

The resonant vibrations of train–bridge system can be divided into following types according to their
generation mechanisms:
(1)
 Bridge resonance excited by periodically loading of moving load series of moving vehicles, due to the wheel
intervals of the vehicles.
(2)
 Bridge resonance excited by the loading rate of moving load series of vehicles.

(3)
 Bridge resonance excited by the periodical actions of the sway forces of running vehicle induced by rail

irregularities and hunting movements.

(4)
 Vehicle resonance excited by the periodical actions of regularly arranged bridge spans and their

deflections.
For bridge resonance analysis, the load series consist of not only the vertical forces of axle weights of the
train vehicles, but also the lateral forces transmitted from the wheels due to the centrifugal forces or wind
pressures acting on the vehicles, which should be noticed.
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